SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine) ;pers:(Karlsson Mats O.);pers:(Hooker Andrew C.)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine) > Karlsson Mats O. > Hooker Andrew C.

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kågedal, Matts, et al. (författare)
  • A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066-Estimating occupancy in the absence of a reference region
  • 2013
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 82, s. 160-169
  • Tidskriftsartikel (refereegranskat)abstract
    • AZD2066 is a new chemical entity pharmacologically characterized as a selective, negative allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). Antagonism of mGluR5 has been implicated in relation to various diseases such as anxiety, depression, and pain disorders. To support translation from preclinical results and previous experiences with this target in man, a positron emission tomography study was performed to estimate the relationship between AZD2066 plasma concentrations and receptor occupancy in the human brain, using the mGluR5 radioligand [C-11]-ABP688. The study involved PET scans on 4 occasions in 6 healthy volunteers. The radioligand was given as a tracer dose alone and following oral treatment with different doses of AZD2066. The analysis was based on the total volume of distribution derived fro m each PET-assessment. A non-linear mixed effects model was developed where ten delineated brain regions of interest from all PET scans were included in one simultaneous fit. For comparison the analysis was also performed according to a method described previously by Lassen et al. (1995). The results of the analysis showed that the total volume of distribution decreased with increasing drug concentrations in all regions with an estimated Kipl of 1170 nM. Variability between individuals and occasions in non-displaceable volume of distribution could explain most of the variability in the total volume of distribution. The Lassen approach provided a similar estimate for Kipl, but the variability was exaggerated and difficult to interpret.
  •  
2.
  • Bergstrand, Martin, 1977-, et al. (författare)
  • Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models
  • 2011
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 13:2, s. 143-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Informative diagnostic tools are vital to the development of useful mixed-effects models. The Visual Predictive Check (VPC) is a popular tool for evaluating the performance of population PK and PKPD models. Ideally, a VPC will diagnose both the fixed and random effects in a mixed-effects model. In many cases, this can be done by comparing different percentiles of the observed data to percentiles of simulated data, generally grouped together within bins of an independent variable. However, the diagnostic value of a VPC can be hampered by binning across a large variability in dose and/or influential covariates. VPCs can also be misleading if applied to data following adaptive designs such as dose adjustments. The prediction-corrected VPC (pcVPC) offers a solution to these problems while retaining the visual interpretation of the traditional VPC. In a pcVPC, the variability coming from binning across independent variables is removed by normalizing the observed and simulated dependent variable based on the typical population prediction for the median independent variable in the bin. The principal benefit with the pcVPC has been explored by application to both simulated and real examples of PK and PKPD models. The investigated examples demonstrate that pcVPCs have an enhanced ability to diagnose model misspecification especially with respect to random effects models in a range of situations. The pcVPC was in contrast to traditional VPCs shown to be readily applicable to data from studies with a priori and/or a posteriori dose adaptations.
  •  
3.
  • Nyberg, Joakim, 1978- (författare)
  • Practical Optimal Experimental Design in Drug Development and Drug Treatment using Nonlinear Mixed Effects Models
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The cost of releasing a new drug on the market has increased rapidly in the last decade. The reasons for this increase vary with the drug, but the need to make correct decisions earlier in the drug development process and to maximize the information gained throughout the process is evident. Optimal experimental design (OD) describes the procedure of maximizing relevant information in drug development and drug treatment processes. While various optimization criteria can be considered in OD, the most common is to optimize the unknown model parameters for an upcoming study. To date, OD has mainly been used to optimize the independent variables, e.g. sample times, but it can be used for any design variable in a study. This thesis addresses the OD of multiple continuous or discrete design variables for nonlinear mixed effects models. The methodology for optimizing and the optimization of different types of models with either continuous or discrete data are presented and the benefits of OD for such models are shown. A software tool for optimizing these models in parallel is developed and three OD examples are demonstrated: 1) optimization of an intravenous glucose tolerance test resulting in a reduction in the number of samples by a third, 2) optimization of drug compound screening experiments resulting in the estimation of nonlinear kinetics and 3) an individual dose-finding study for the treatment of children with ciclosporin before kidney transplantation resulting in a reduction in the number of blood samples to ~27% of the original number and an 83% reduction in the study duration. This thesis uses examples and methodology to show that studies in drug development and drug treatment can be optimized using nonlinear mixed effects OD. This provides a tool than can lower the cost and increase the overall efficiency of drug development and drug treatment.
  •  
4.
  • Silber, Hanna E., et al. (författare)
  • Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design
  • 2009
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 36:3, s. 281-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Intravenous glucose tolerance test (IVGTT) provocations are informative, but complex and laborious, for studying the glucose-insulin system. The objective of this study was to evaluate, through optimal design methodology, the possibilities of more informative and/or less laborious study design of the insulin modified IVGTT in type 2 diabetic patients. A previously developed model for glucose and insulin regulation was implemented in the optimal design software PopED 2.0. The following aspects of the study design of the insulin modified IVGTT were evaluated; (1) glucose dose, (2) insulin infusion, (3) combination of (1) and (2), (4) sampling times, (5) exclusion of labeled glucose. Constraints were incorporated to avoid prolonged hyper- and/or hypoglycemia and a reduced design was used to decrease run times. Design efficiency was calculated as a measure of the improvement with an optimal design compared to the basic design. The results showed that the design of the insulin modified IVGTT could be substantially improved by the use of an optimized design compared to the standard design and that it was possible to use a reduced number of samples. Optimization of sample times gave the largest improvement followed by insulin dose. The results further showed that it was possible to reduce the total sample time with only a minor loss in efficiency. Simulations confirmed the predictions from PopED. The predicted uncertainty of parameter estimates (CV) was low in all tested cases, despite the reduction in the number of samples/subject. The best design had a predicted average CV of parameter estimates of 19.5%. We conclude that improvement can be made to the design of the insulin modified IVGTT and that the most important design factor was the placement of sample times followed by the use of an optimal insulin dose. This paper illustrates how complex provocation experiments can be improved by sequential modeling and optimal design.
  •  
5.
  •  
6.
  • Ernest, C. Steven, II, et al. (författare)
  • Methodological Comparison of In Vitro Binding Parameter Estimation : Sequential vs. Simultaneous Non-linear Regression
  • 2010
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 27:5, s. 866-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of simulated data was compared using sequential (NLR) and simultaneous non-linear regression (SNLR) to evaluate precision and accuracy of ligand binding parameter estimation. Commonly encountered experimental error, specifically residual error of binding measurements (RE), experiment-to-experiment variability (BEV) and non-specific binding (B-NS), were examined for impact of parameter estimation using both methods. Data from equilibrium, dissociation, association and non-specific binding experiments were fit simultaneously (SNLR) using NONMEM VI compared to the common practice of analyzing data from each experiment separately and assigning these as exact values (NLR) for estimation of the subsequent parameters. The greatest contributing factor to bias and variability in parameter estimation was RE of the measured concentrations of ligand bound; however, SNLR provided more accurate and less bias estimates. Subtraction of B-NS from total ligand binding data provided poor estimation of specific ligand binding parameters using both NLR and SNLR. Additional methods examined demonstrated that the use of SNLR provided better estimation of specific binding parameters, whereas there was considerable bias using NLR. NLR cannot account for BEV, whereas SNLR can provide approximate estimates of BEV. SNLR provided superior resolution of parameter estimation in both precision and accuracy compared to NLR.
  •  
7.
  •  
8.
  • Ernest II, Charles, et al. (författare)
  • Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model
  • 2014
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 41:6, s. 639-654
  • Tidskriftsartikel (refereegranskat)abstract
    • D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIMtotal). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIMtotal was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIMtotal. Through the use of an approximate analytic solution and weighting schemes, the FIMtotal for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
  •  
9.
  • Ernest II, Charles Steven, et al. (författare)
  • Simultaneous optimal experimental design for in vitro binding parameter estimation
  • 2013
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science+Business Media B.V.. - 1567-567X .- 1573-8744. ; 40:5, s. 573-585
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples.
  •  
10.
  • Hennig, Stefanie, et al. (författare)
  • Application of the Optimal Design Approach to Improve a Pretransplant Drug Dose Finding Design for Ciclosporin
  • 2012
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 0091-2700 .- 1552-4604. ; 52:3, s. 347-360
  • Tidskriftsartikel (refereegranskat)abstract
    • A time and sampling intensive pretransplant test dose design was to be reduced, but at the same time optimized so that there was no loss in the precision of predicting the individual pharmacokinetic (PK) estimates of posttransplant dosing. The following variables were optimized simultaneously: sampling times, ciclosporin dose, time of second dose, infusion duration, and administration order, using a published ciclosporin population PK model as prior information. The original design was reduced from 22 samples to 6 samples/patient and both doses (intravenous oral) were administered within 8 hours. Compared with the prior information given by the published ciclosporin population PK model, the expected standard deviations (SDs) of the individual parameters for clearance and bioavailability could be reduced by, on average, 40% under the optimized sparse designs. The gain of performing the original rich design compared with the optimal reduced design, considering the standard errors of the parameter estimates, was found to be minimal. This application demonstrates, in a practical clinical scenario, how optimal design techniques may be used to improve diagnostic procedures given available software and methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy